
Weekly Report, 2020-04-22

Summary

<u>Hall A – SoLID Magnet Controls</u>

Mary Ann Antonioli, Aaron Brown, Pablo Campero, Brian Eng

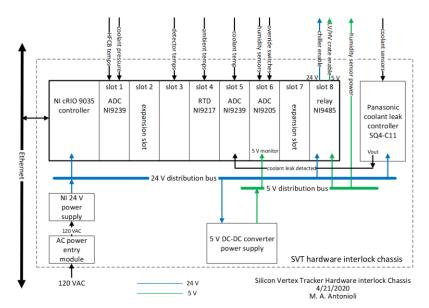
- Generated AutoCAD drawings:
 - * A00000-16-03-1150 Linear Voltage Differential Transducers
 - ★ A00000-16-03-2450 Cable Diagram for JT Valves
- Completed sketch drawing for the readout and control of the JT Valves
- Developing database to store controls and instrumentation drawings for SoLID
 Trawings are databased as paths to the PDF file
- Drawings are databased as pains to the PDF file
 Developed PLC subroutine to read temperature sensors in Cryo Control Reservoir
 - Subroutine also checks sensors for errors based on their limit and fault readouts
- Developing PLC code to monitor liquid levels inside LN₂ and LHe reservoirs
- Completed Cryo Control Reservoir HMI screen
 - * Added temperature sensors and vacuum alarm animations to show sensors readout errors and over/under limit.

SoLID Solenoid Cryo Control Reservoir HMI screen. Sensors are not connected to the PLC system, hence the red indicators.

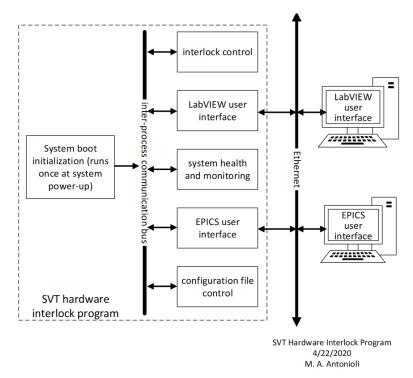
Hall A – SBS GEM

Brian Eng, Marc McMullen

- Generated schematic/notes on I²C multiplexer board to for its CAD design
- Ordered DSG Gas Flow Sensor PCB; delivery expected in ~one week.



Weekly Report, 2020-04-22


<u>Hall B – SVT</u>

Mary Ann Antonioli, Peter Bonneau, Marc McMullen

- Received Interlock System cable disconnect parts
- Generated technical documentation for Hardware Interlock System

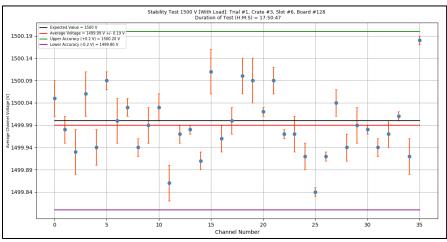
System diagram of SVT Hardware Interlock System

Network and Processes diagram of SVT Hardware Interlock System

2 DSG Weekly Report, 2020-04-22

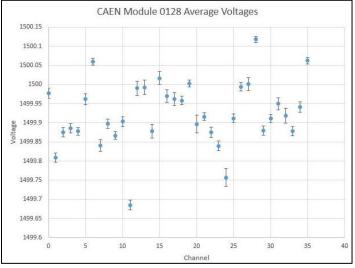
Weekly Report, 2020-04-22

Hall C – CS-Studio Screen (CSS) Development


Mary Ann Antonioli, Aaron Brown, Pablo Campero, Tyler Lemon

- Developing HMS Cryo and HMS Q1 PSU Setup screens
- Developed Python program that runs from a CSS screen that creates test versions of converted screens with local PVs.
- Developing database to store completed CSS-BOY screens
- Wrote DSG note detailing CSS screen development; note posted to DSG website

Hall C - CAEN Testing


Aaron Brown, George Jacobs

- Analyzing stability test data using Python
 - * Plots below shows average channel voltages with load for Board #128
 - * Error bars in plots are standard deviation for that channel during test

Python plot of each channels' average voltage during stability test.

• Analyzing stability test data using Excel (for comparison to Python results)

Excel plot of each channels' average voltage during stability test.

3 DSG Weekly Report, 2020-04-22

Weekly Report, 2020-04-22

<u>HDice – fsNMR</u>

Peter Bonneau, Tyler Lemon

- Completed development of Stage 2 of fsNMR program
- Wrote DSG note detailing fsNMR development; note posted to DSG website

Engineering

<u>Mindy Leffel</u>

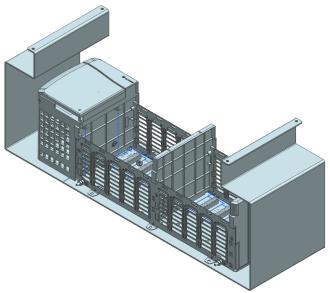
• Populated one BPM boards (total of eight of ten completed)

DSG R&D – EPICS Data Logger

<u>Aaron Brown</u>

- Developing R program to plot data directly from database
- Debugging issues with data's timestamp
 - * There is a 4 hour time offset when querying the database using R
 - * Changing the session time zone to EST instead of UTC had no effect

DSG R&D – RICH


<u>Peter Bonneau</u>

- Researched new Sensirion SHT35-DIS-F2.5KS integrated temperature & humidity sensor. As compared to the SHT85 sensor, the SHT35 has:
 - ★ Same accuracy: +/-1.5% RH and +/-0.1°C
 - * Smaller size: $2.5 \times 2.5 \text{ mm}^2$ foot print in a surface mount package
 - * Enhanced signal processing with two distinctive user-selectable I^2C addresses

DSG R&D – NX11 Modeling

<u>Brian Eng</u>

• Creating PLC rack mount in NX 11 using its Sheet Metal program.

NX11-modeled PLC bracket with PLC model to show how PLC will fit in bracket.

Weekly Report, 2020-04-22

DSG R&D – MSELV Chassis

Peter Bonneau, Tyler Lemon, Marc McMullen

- Repositioned RMC components and optimized trace routing.
- RMC review completed
- Tested Raspberry Pi's signal generation using different GPIO (general purpose input/output) libraries to investigate whether it could be used as chassis controller
 - ★ Timing of generated square wave measured using oscilloscope with average frequency of signal calculated over 1000 samples.
 - * Python GPIO library's timing for frequencies greater than 100 Hz is inconsistent
 - ★ *pigpio* library can consistently generate correct signals up to 500 kHz.
 - Issues at 1 MHz may be due to data type of input to program that generates signal.

	Python GPIO Library		pigpio Library	
Set Frequency	Average	Std Dev	Average	Std Dev
1 Hz	0.9987 Hz	0.0002205 Hz	1 Hz	0 Hz
10 Hz	9.967 Hz	0.01135 Hz	10 Hz	0 Hz
100 Hz	97.53 Hz	0.1921 Hz	100 Hz	0.001179 Hz
1 kHz	0.8264 kHz	0.003415 kHz	1 kHz	0.0001819 kHz
10 kHz	3.559 kHz	0.005209 kHz	10 kHz	0.009437 kHz
100 kHz	5.176 kHz	0.146 kHz	100.5 kHz	1.026 kHz
1 MHz	0.005482 MHz	0.0003155 MHz	2.107 MHz	0.032010 MHz

Table containing results of Raspberry Pi signal generation tests using Python GPIO and pigpio